Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Omega ; : 102801, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2240280

ABSTRACT

This paper introduces mathematical models that support dynamic fair balancing of COVID-19 patients over hospitals in a region and across regions. Patient flow is captured in an infinite server queueing network. The dynamic fair balancing model within a region is a load balancing model incorporating a forecast of the bed occupancy, while across regions, it is a stochastic program taking into account scenarios of the future bed surpluses or shortages. Our dynamic fair balancing models yield decision rules for patient allocation to hospitals within the region and reallocation across regions based on safety levels and forecast bed surplus or bed shortage for each hospital or region. Input for the model is an accurate real-time forecast of the number of COVID-19 patients hospitalised in the ward and the Intensive Care Unit (ICU) of the hospitals based on the predicted inflow of patients, their Length of Stay and patient transfer probabilities among ward and ICU. The required data is obtained from the hospitals' data warehouses and regional infection data as recorded in the Netherlands. The algorithm is evaluated in Dutch regions for allocation of COVID-19 patients to hospitals within the region and reallocation across regions using data from the second COVID-19 peak.

2.
Health Care Manag Sci ; 24(2): 402-419, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1152052

ABSTRACT

This paper presents a mathematical model that provides a real-time forecast of the number of COVID-19 patients admitted to the ward and the Intensive Care Unit (ICU) of a hospital based on the predicted inflow of patients, their Length of Stay (LoS) in both the ward and the ICU as well as transfer of patients between the ward and the ICU. The data required for this forecast is obtained directly from the hospital's data warehouse. The resulting algorithm is tested on data from the first COVID-19 peak in the Netherlands, showing that the forecast is very accurate. The forecast may be visualised in real-time in the hospital's control centre and is used in several Dutch hospitals during the second COVID-19 peak.


Subject(s)
Bed Occupancy/trends , COVID-19 , Intensive Care Units , Forecasting , Hospitals , Humans , Kaplan-Meier Estimate , Models, Statistical , Netherlands , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL